Research
Paper
- Lund, A., S. W. Mogensen, and N. R. Hansen (2022). Soft Maximin Estimation for Heterogeneous Data. Scandinavian Journal of Statistics. arXiv.
- Lund, A. and N. R. Hansen (2019). Sparse Network Estimation for Dynamical Spatio-temporal Array Models. Journal of Multivariate Analysis. arXiv.
- Lund, A., M. Vincent, and N. R. Hansen (2017). Penalized estimation in large-scale generalized linear array models. Journal of Computational and Graphical Statistics. arXiv.
- Lund, A. (2017). Spatio-Temporal Modeling of Neuron Fields. Department of Mathematical Sciences, University of Copenhagen. Ph. D. thesis.
- Mogensen, S. W., A. Lund, and N. R. Hansen (2017). Sparse maximin aggregation of neuronal activity. SPARS2017.
Software
- Lund, A. (2022). pysmme: Soft Maximin Estimation for Large Scale Heterogeneous Data. Python package version 1.0. PyPi.
- Lund, A. (2022). FRESHD: Fast Robust Estimation of Signals in Heterogeneous Data. R package version 1.0. CRAN.
- Lund, A. (2021). SMME: Soft Maximin Estimation for Large Scale Heterogeneous Data. R package version 1.0. CRAN.
- Lund, A. (2018). dynamo: Fit a Stochastic Dynamical Array Model to Array Data. R package version 1.0. CRAN.
- Lund, A. (2017). SMMA: Soft Maximin Estimation for Large Scale Array-Tensor Models. R package version 1.0. CRAN.
- Lund, A. (2015). glamlasso: Penalization in Large Scale Generalized Linear Array Models. R package version 1.0. CRAN.